编辑推荐
适读人群 :数据科学家、数据分析师、商业智能专业人士、首席技术官和数据官,以及对收集和使用高质量数据感兴趣的人士
在当今这个数据驱动的时代,数据质量无疑是企业决策与业务发展的基石。然而,如何有效地提升数据质量,构建一个稳健、高效的数据体系,却是许多企业和数据从业者面临的共同挑战。这本书正是为解决这一难题而生。
作者以深厚的行业经验和专业知识,精心提炼出一套实用的4步方法论,帮助读者从源头到终端,全方位地提升数据质量。这4步不仅逻辑清晰,易于理解,而且具有很强的可操作性,读者可以轻松地将其应用于实际工作中,取得立竿见影的效果。
此外,书中还包含了大量来自各行各业的实战案例,这些案例不仅展示了数据质量提升的实际效果,更提供了宝贵的经验和教训,让读者在学习的过程中少走弯路,更快地掌握数据质量管理的精髓。
总的来说,《数据质量实践手册:4步构建高质量数据体系》是一本极具价值的数据治理指南,它既有理论深度,又注重实践操作,无论是对数据新手还是专业人士,都是一本不可多得的佳作。我相信,通过这本书的学习,每一位读者都能在数据质量管理的道路上取得显著的进步,为企业的发展贡献自己的力量。
内容简介
高质量的数据关乎企业运营、合规、决策和业绩的关键,哈佛商业评论的一项研究发现,企业中只有3%的数据符合质量标准,绝大多数公司都在寻求切实可行的指导来提高数据质量。
本书作者基于多年在数据、数据分析和人工智能方面的实践经验,阐述了4步构建高质量数据体系。他提出了高质量数据的四阶段DARS方法(定义、评估、实现、持续)和10个数据质量最佳实践案例,以此来提高业务中的数据质量水平,为业务提供数据价值,保证生成的数据可以有效支持高级分析和人工智能。
在本书中,您将学习定义和评估数据质量的技术、标准和度量指标,了解如何确保公司的数据收集实践避免常见的陷阱。本书适合数据科学家、数据分析师、商业智能专业人士、首席技术官和数据官,以及对收集和使用高质量数据感兴趣的人士。对于有志成为首席数据官的各位读者,这是一本难得的宝典级书籍!
作者简介
普拉桑特·苏特卡尔(Prashanth Southekal)
博士,知名的数据分析和人工智能顾问、作家和教授,曾为包括宝洁、通用电气、壳牌、苹果、联邦快递和SAP在内的80多家公司提供咨询服务。他是Data for Business Performance和Analytics Best Practices的作者,定期在Forbes和CFO University上发表关于数据分析和人工智能的文章。他是麻省理工学院CDOIQ研讨会的编辑委员会成员,也是硅谷风险投资公司BGV(Benhamou Global Ventures)的顾问委员会成员,还是IE商学院(西班牙马德里)的数据和分析副教授。CDO Magazine将他列入2022年全球75位学术数据领导者之列。除了从事咨询和顾问工作外,他还在全球培训了3000多名数据和分析专业人员。
译者简介
马欢 DAMA中国主席,DAMA中国数据管理社区主理人,获得CDMP Master认证,是《数据管理知识体系指南(DMBOK)》第1版和第2版的主要译者,对DAMA的数据管理知识体系有深刻的认识和理解,翻译了多部作品。
巫雪辉 资深数据架构师和数据团队管理者,获得CDMP Master认证,拥有超过20年的数据管理领域的项目实施经验,职业生涯一直专注于大数据技术的研发、应用和创新,特别是在数据治理和数据质量管理方面,积累了丰富的项目实践经验和深入的技术见解。